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LINEAR REGRESSION TO A LOWER ORDER MODEL:
EFFECTS AND IMPLICATIONS

INTRODUCTION

Linear regression is used extensively in the fields of science,
engineering, and business. In many instances, because the data-generating
process can be complex, exhibit random effects, or be unknown, the regression
model used only approximates the actual process model. For these reasons,
regression models of reduced order are often used. Such medels are designed
to be as accurate as necessary for their intended application without
retaining unnecessary and noise-sensitive, higher order terms.

When regression is used for noise suppression, the order of the
regression model required can be a function of the noise level encountered.
Under high-noise conditions, the errors incurred by using a reduced-order
regression model can be negligible when compared with the ncise uncertainty.
Under low-noise conditions, however, the errors can become significant.

When the regression parameters are to be related to process state
parameters for subsequent processing, it is very important that the
relationship be properly formed. Use of a reduced-order regression model can
produce unexpected biases, which can be accounted for in the state relation if
interpreted properly. Such a problem was encountered when hierarchical
processing was applied to the contact motion anaiysis problem. In this
application, a bearing sequence, which is related to the state by means of the
arctangent function, was characterized by a second-order regression model.
When relating the regression coefficients to the state parameters, the bias
resulting from the nonzero derivatives of the arctangent function proved
significant under low-noise conditions. Application of the analysis presented
in this report allowed for bias compensation and the concomitant improvement
in estimator performance.

This report presents a brief review of linear regression and an analysis
of the effects of using a reduced-order regression model. In addition, a
parallel analysis using the Householder transformation, which provides a
convenient computational scheme for bias compensation, i1s discussed.




LEAST-SQUARES REGRESSiON

A process of some fixed order can be represented by a finite Taylor
series about a chosen point. If noise-~free measurements are available, the
Taylor series coefficients can be calculated exactly provided the number of
measurements is at least equal to the order of the process. In this case, the
system of measurement equations, with the Taylor series coefficients as
unknowns, forms a complete set of linear equations. When the number of
measurements is greater than the order of the process, the system is over
determined, and redundant equations can be ignored. The problem becomes more .
complex when measurement noise is present.

The most common method of solving an overdetermined system of equations .
in the presence of notise is to use the method of least squares (references 1
and 2). Consider the system of equations

AX = b, (1)

where x is the n x 1 vector of unknown coefficients, A is the m x n system
matrix (m > n) created from the samples of the independent variable, and b 1s
the m x 1 measurement vector. The least-squares solution is derived by first
introducing the m x 1 error vector

e =b - Ax. (2)

The objective in the least-squares technique is to minimize the squared
magnitude of the error vector, so that

Hell2 = efe = (b - A)T(b - Ax), (3)
giving the least-squares solution
x = (ATA)-1ATh = A%, (4)

The matrix A* = (ATA)-1AT, which is the orthogonal projection matrix that
projects an arbitrary vector into the subspace spanned by Ax, is called the
generalized or pseudoinverse of the matrix A (references 1 and 2).

In the problem at hand, the rows of the matrix equation (Ax = b) are
simply samples of the Taylor series representation. which results in the
matrix A assuming a distinct form. To illustrate the form of A, consider the
nth order Taylor series polynomial about the point tg given by

B(t) = xg + xj(t - tg) + x2(t = 19)% + ... + xp(t - 1), (5)
where

Xp = bltg),

Xi = bi(tg)/ (i), i 0, (6)

with bi(t) being the ith derivative of b(t). With no loss in generality.




tg = 0 may be selected. For m samples of the function taken ac¢ points
t;.t2,....ty, the resulting set of eguations is§

b(t]) = xg + x1t] + x2t12 + ...+ xntln.

b(ty) Xp + Xjt2 + x2t22 - ...+ xntzn, (7

b(tg) = X9 + X1tg + xztm2 + ...+ Xptgh,

which may be written in the form of equation (1) with matrix A defined as

. 5 0
1 t1 tl tl
2 n
1 t t .. t (8)
A = 2 2 2 '
‘ .2 n
i 1 tm tm tm )

and
b= fb(t]).b(t), ....btyIT.

An estimate of the nth order Taylor series coefficients x based on m
noisy measurement samples y; = b(tj) +« wj, with w; being the measurement
noise, may be obtained by solving the ieast-squares equation (4) using the
system matrix of equation (8) and b = [y}.y7..... Yml-

The matrix A takes a particularly convenient form when the measurement
points t; are uniformly spaced and (again, with no loss in generality) are
svmmetrical about the point tg = 0: hence, ty = kAt for k = (-m/2, m/2).

(Here, m 1s considered to be an even number for simplicity: simiiar results
hold for m odd.) Now, the matrix A has the form

1 (-m2)at [(-m2)8t12 ... [(-w/2)at)"
A=l : : : ; . (9)
1 (em/2)8t [sw/2)8t]% ... [(+m/2)8t)"

and ATA is given by

[ mel L(ist)  £(iat)? £(ian)” |
L(14¢t) : : : :
.. : : : : (10)
| E(ia)*! £(iat)2n]




wher¢ rhe summation §5 over @ = ~m’2 to m/2. Agaia, ar estimate of the
coefficiunt vector x may be obtained by solving the lzasl-2quares equation
(4}. Ecvimaiion using the {easit-suuares criterion is nothing new; what is of
interest nare is the implicatioo of using A medel order foe estimation that is
lewer than the actual prortess modei order.

ESTIMATION TU A LUWER ORDER MODEL

When the precess of inierest is chuvacterized by a Taylor series, for
meny - practical apiplications, the higher crder terms in the series are of
significantly lower magnitude when coitpi-ed with the .ower oraer terms. It is
often the case that the noise level will result in estimation ercrors that are
cermparabie vith the maznitude of rhzse higher order items. For this reason,
1t 1s orten desitubla to madetr tiie system with a4 lower arder. providiig a more
rchust estimazion of the decired coerficieats. Also, in soms iastances, it
pay be possihle Jor the Tayior series coefiicients of the higher order ieras
10 he expressed 4ac funct:ons of the lower crdec coefficients. Unaer such
candit.ons, tie ower order terms comp!z:tely describe the system dynamics,
2ver (hougn tuere may ce rnonzero, “igher orde: tevws. fiere again, 1t mav be
desiranle to 2siimate tiue coefltcients Tor ine lowest order model to
setisfacrorily descrive tie system domamicn. However, care must be taken when
inte-preting th? resuit.ng coeificient es:imates. becavse the basis functiors
«of (he Tavicr series arc not crthogona!. The interpretation becomes
pasticdiarly iwowitant when the cocfficient estimates are ty he compzarad with
predictions trom a state paameier moael.

To 1ilustrate the effects of fitting tec 2 Jover order, consider the
following process described bty the fourth-crder modei:

y(t) = qdp + @' + qau? « q3td « gqt? (1)

Then, consider the foliow:ing case where the estimation is performed for a
made! of tie secund order:

Y(t) = xq + x|t = xltz. (12)

Again, for simpii<ity, consider a svmmetric time intervai, w#hich has been
uniformly sampled. The impact of the reduced-order ectimation can be
evaluated by solving the least-squarcs equations under noise-free conditions.
Under these conditions, the measurements arc simply noise-free samples of the
process function, which 1s shown as

-

q + ql(-m/Z)At + ... 4 q4[(-m/2)bt]4-

b = q0+q1(O)At + ... +q4((0)At]4 . (13)

) 4 * ql(m/Z)At + q4{(m/2)At]4




This may be written as b = Qq, where Q is the (m x §) matrix in the form of
equation (9) aad q is the vector of coefficients from equation (11), such that

q = [q0.91.497.93.94) - (14)

From equations (9) and (12), it may be seen that the matrix A is given by

1 (war ... (ew2)at]? )
PR (2)ar : roat)? |, (15)
1 (/2)Aat ... [n/2)at)? ]
Fron equation (10), ATA takes the form
2 m/2 4
me] 0 206t)% ¢ (i)*
i=1
m/2
AlA . 0 280)% T (i)? 0 , (16)
i=1
\ m/2 m/2
260) 1 (i)? 0 260 & (1!
" i=1 1=l
and the product ATb takes the form
Alp = aTQq, (17)
[ m/2 m/2
2 . 4. .4
mel 0 28t)* T (i) 0o 2080% (i)
izl i=1
n7 /2
alg - 0 21?1 (i)? 0o 2a00' )} 0 . (18)
) izl (=1
m/2 _ m/2 m/)
Yoot ¢ ()2 0 rant ot 0 248 ¢ (i)
i=1 i=1 i=l

The sums ‘n egquations (16) and (18) mav be replaced by rthei- closed-form
cquivalents and for large m approaimated by the most signiiicant term. The
resuiting approximations follow, :i.e.,




237
At)'m
m 0 13
2.3
ATa = 0 tle o |, (19)
ot 2m3 0 At 4m5
12 80
m 0 At 2m3 0 gAt[4m5 ]
12 80
2.3 4 5 .
ATQ - 0 fot)a 0 s 0 . (20)
at 2m3 0 At 4m5 0 gAtlﬁgz
L 12 80 448 !
and
4 4
560
T, -1,T 3(at)%n?
(A"A) "AQ = 0 1 0 20 0 . (21)
3 2.2
0 U 1 0 3(at) m”
L 14 P
From the resulting least-squares solution for x
x = (ATA)-1aTQq, (22)

1t may be seen that the estimates of the components of x are not exactly equal
to the corresponding components of q. As an example, look at the estimate of
Xg. such that

4 4
< J(at) m ] .
Xg =9 - [ 560 1% (23)

The use of a reduced-order estimation mode! produces a bias on the Taylor
series coefficient estimates.

To evaluate whether this biasing effect is significant, one must look at
1ts magnitude relative to the estimated noise variance. From the Cramer-Rao
inequality. 1t may be seen that the covariance of an unbiased estimator is
bounded below by the inverse of the Fisher information matrix (reference 2).
While xp is a biased estimate of qg, it is an unbiased estimate of the
parameter for which the right-hand side of equation (23) is an approximation.
This 1s also the case ftor the other elements of the vector x. The inverse of
the Fisaer information matrix, og2(ATA)-1 for homoskedastic noise with
variance owz (reference 2), 1s a lower bound to the covariance on X, so that

6




9 . 215
4m (At)2m3
2, T, .-1 2 12
g “(A°A) =g 0 — 0 . (24)
w w (A[)2m3
~-15 0 180
| (at)2n® @at)*ad |

It may be seen that axoz > (9/4n)ow2 and, from equation (23), the bias error
due to the reduced-order fit 1is

[3(At)4m4q4]
Cb = -—-53-0—— . (25)

The bias effect becomes significant when the corresponding standard deviation
1s on the order of the bias magnitude

(At)4n9/2q4

W T (26)

This gives the noise level or, conversely, the magn‘tude of the process
parameter q4, for which the biasing effect of using 4 iov.r order model
becomes significant.

To i1llustrate that the use of a reduced-order modei may be advantageous
from a minimum variance perspective, look at the Cramer-Rao bound for a
first-order mocel, when

(1/m) 0
c:WZ(ATA).1 =0 2 12 . (27)
0 13
(At ) m J

It may be seen that the variance on the xq parameter for a first-order model
is four-ninths of the corresponding second-order model estimate. This
illustrates the fact that, while using a reduced-order model may introduce a
bias. it can provide an estimate with significantly lower variance. In
situations where the bias can be accounted for. or under relatively high-noise
conditions, it is most dvantageous to usc a model of minimal order.

BIAS COMPENSATION VIA THE HOUSEHOLDER TRANSFORMATION

Use of the pseudoinverse for the solution to the normal equations its
convenien: for the derivation of an analytic expression for noise-free
regression coefficients. However, the analysis uses the assumption of a
constant data rate and is further simplified by using approximate expressions
tor the sums involved. For large or poorly conditioned systems, the matrix
inversion required for the pseudoinverse solution can be computationally
intensive and problematical (reference 2). To avoid these difficulties,




numerical techniques have been developed that eliminate the need for an
explicit matrix inversion. One technique commonly emploved is the Householder
transformation (references 2 and 3).

The Householder tranformation is a numer.cal technique used to effect an
orthogonal transformation on the regression model. Without delving into
details of the Householder procedure, the results of interest may be cbtained
by looking at the transformation matrix to which it effectively applies. The
Householder matrix H transforms the regression model into the upper triangular
form

HA = . Hb = , (28)

where Syx 1s an n x n upper triangular matrix, ¢ is an n x ! vector, and §¢ 1is
an_(m - n) x | vecror. Using the orthogonal property of the Householder matrix
(HTH = 1), the least-squares criterion may be rewritten as

Ile]12 = eTe = (b - Ax)T(b - Ax),
= (b - AOTHTH(b - Ax).
= (Hb - HAx)T(Hb - HAx),
£ S1 T [¢ S
I e I X x| _ X X, (29)
or Ee | Ee °
[lel|2 = (gx - Sxx)T(Ex - Sxx) + £aTEe. (30)

The second term in equation (3C) is independent of x: hence, the least-squares
solution i1s found by choosing the x that causes the first term to vanish, 1.e.,

x = Sy-lg,. (31)

Because Sy is an upper triangular matrix, the inversion involved in equation
(31) 1s straightforward.

Agair., the order of the process mode! is considered to be greater than
the regression model. Under noise-free conditions, the measurement vector 1s
generated by b = Qq, where the matrix Q is of the form of equation (8). and 1t
can be aoted that

where A 1s the matrix for the lower order regression model and A contains the

higher order components. Appiying the Householder transformation to the
resuliing regression mode! makes the squared error




Ile]12 = (Hb - HAx)T(Hb - HAx),

Sx Sx Sx T Sx Sx Sx
- X q -

0 Sc 0 0 Se 0

« ([0 : Sel)T (10 : Selq). (33)

Again, the second term is independent of x and represents the magnitude of the
squared error resulting from the use of a reduced-order regression model. The
least-squares solution is obtained by choosing x so that the first term
vanishes, i.e.,

x = Sx~1[Sy : S4lq,
= [ : Sy-1841q. (34)

The ma‘'rix in equation (34) is a general form of that found in equation (22),
with none of the appreoximations or assumptions of constant data rate or
symmetric interval. It is readily produced as a byproduct of the Houscsholder
procedure and is not a function of the measurement noise.

APPLICATION TO HIERARCHICAL ESTIMATION

The results of the previous sections become particularly relevant when
the reduced~order regrassion is performed as the first stage in a hierarchical
estimation procedure. As such, locally estimated regression parameters serve
as "pseudomeasurements’ for a second stage of estimation, which combines the
local parameters from multiple data segments to provide a global state
estimate. As srated earlier, it may be advantageous to perform a minimal-
order local estimation to minimize noise effects. When these local estimates
are used as pseudomeasurements, the global measurement model takes the form of
equation (34), i.e.,

b(6) = (I : Sy-18,]q(8), (35)

where b(8) is the predicted pseudomeasurement that corresponds to the solution
x provided by the local regression. The vector q(6) comprises the Taylor
series coefficients based on the global state estimate 6. Use of the
measurement mode) of equation (35S) limits the modeling bias errors to a value
determined by the order to which q(8) is extended, while retaining the noise
characteristics associated with the regression to the order of b(8).

These developnents were applied to the nonlinear state estimation problem
using data segmentat:on and compression (reference 4). Here, bearing data,
which are related to the state through the arctangent function, are character-
ized on a segment by a second-order polvnomial. For each segment, the result-
‘ng estimates are used as tk* input to a second stage of processing that




performs the global noniinear state estimation. For the problem at hand, only
bearing and its first two derivatives (B,3,B) are independent, and all higher
time derivatives of bearing can be written in terms of 3.8,3. The use of a
second-order mode! to characterize the bzaring curve results in biased
estimates of the Taylor series coefficients due to the nonzero higher
derivatives. However, when calculating the predicted polynomial coefficients
b(0) from the current state estimate 6, it is possible to use the correction
terms of equation (35) by simply using the predicted value of q(8). That is,
the components of q through q4 are retained (corresponding to bearing time
derivatives up to £{4)). This results in a bias compensation that is accurate
to the fourth order, while the regression is carried to only a second-order
mode!l and, hence, has lower variance than a fourth-order regression. The

resulting estimation algorithm performs well under both high-noise and
low-noise conditions.

[ 4
SUMMARY

Because the actual data-gathering process can be complex, exhibit random
effects, or be unknown, i1t i1s often useful to implement a minimal-order model
when estimating process parameters. In cases where robustness and accuracy
are of 1nterest and the estimation aigorithm must operate under both
high-noise and low-noise conditions, 1t may be necessary to account for the
biasing effects of higher order terms on the estimates of lower order
parameters. While the biasing can be unnoticeable under high-noise conditions
or for short observation intervals, it can account for a significant
percentage of the errors under low noise or for long observation intervals.
This circumstance has beecn illustrated for the case of a linear-regression
model in additive Gaussian noise. The resulting analysis proved useful in
bias compensation for a hierarchical estimation technique.
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